Knowledge transfer for composites

“We must work together if we want to develop affordable manufacturing automation solutions along the entire process chain to help bring about the required reduction in the cost of the finished product,” VDMA Composite Technology Forum spokesman and KraussMaffei Technologies GmbH board member Frank Peters told Monday’s “Series manufacture of composites – across-the-board automation” meeting in Frankfurt. This was the first time that members of the VDMA Composite Technology Forum and of the partner organisations AVK, Carbon Composites e.V. and CFK Valley Stade e.V. had got together to exchange ideas. More than 150 delegates discussed approaches to automation and what was required of plant and machinery manufacturers.

Continue reading

Advertisements

Crash-safe battery protection for electric cars

image

Everyone is talking about electric drives, and the scientists from Fraunhofer are also working on them. Engineers have replaced a battery box for lithium-ion batteries with a lightweight component. Not only does the housing save weight and sustain no damage in an accident – for the first time ever, it can also be mass-produced.

If an electric car wants to be environmentally friendly it must weigh as little as possible, because when the light turns green every additional pound/kilogram must be accelerated with considerable energy expenditure. And the lighter the electric vehicle, the longer it can be on the road without having to be plugged back into a power outlet. To advance the symbiosis between electromobility and lightweight construction, engineers from the Fraunhofer Institute for Chemical Technology ICT in Pfinztal, Germany, are developing manufacturing concepts that have one goal – they want to gradually replace individual components in the vehicle with lightweight ones. “However, this cannot affect the stability or the safety of the passenger,“ said Manfred Reif, project manager in the joint project ”Fraunhofer System Research for Electromobility.”

The fact that this is possible is proven by the researchers with the Artega GT, a sports car that was modified into a prototype with an electric drive, where the electric motor is located in the rear. The experts, along with colleagues from the Fraunhofer Institutes for Mechanics of Materials IWM, for Structural Durability and System Reliability LBF and for High-Speed Dynamics, Ernst-Mach Institut EMI, have developed a mass-production-ready, crash-safe battery housing that meets strict requirements. The battery housing that surrounds the battery that weighs 340 kilograms (749.57 lbs.) only weighs 35 kilograms (77.16 lbs.). “Traditional solutions made of steel weigh up to 25 percent more,“ said Reif. “The battery housing can withstand a crash, assuming a ten-fold gravitational acceleration.“ And even if a sharp object collides with the housing at 60 km/h (45mph), the highly sensitive battery on the inside remains intact. In addition, the 16 lithium-ion modules are protected from humidity, and a semi-permeable membrane to equalize pressure also guarantees that the batteries are able to “breathe.“

What make the new battery protection so special are the new fiber-reinforced composite materials. Currently, steel components are welded together to make these boxes. “However, it must be possible to mass-produce the lightweight components,“ explained Reif. “Up to now, this has not been possible in this form.“ Fiber composites have been used for a long time in the manufacturing of airplanes; however, only a few hundred are built every year. But as far as cars are concerned, this number could be several thousand daily, and mass production involves completely different requirements as far as materials are concerned. For this reason, the scientists have developed a special process chain with cycle times that make the production of high unit counts possible. “The process chain is designed so that many steps can be run simultaneously,“ said Reif. For example, the plastic is heated up parallel to the production step, and elements are prepared that ensure load and tensile strength or the attachment to the storage in the rear of the Artega. This includes, for example, directionally oriented fiberglass structures or custom-made metal inserts. All the individual components are then assembled and pressed together in a “one-shot process.“
Currently, the battery box must still be secured with transverse attachments in the rear of the Artega; however, the experts working with Prof. Dr.-Ing. Frank Henning are already looking at a lightweight replacement for that.

Glass fibre amti-dumping issue – decision postponed to 26 August

After an initial proposed deadline of 11 August for EU 27 Member States representatives to cast their vote in writing on provisional anti-dumping measures on chinese glass fibre (see the previous post "EuCIA against anti-dumping measures on GF from China"), the written consultation has been replaced with an oral consultation of the Member States on the 26th of August in Brussels.

EuCIA against anti-dumping measures on GF from China

Following the recent note concerning trade measures imposed by India and Turkey on glass fibre originating in China (23/07/2010), EuCIA (the European Composites Industry Association) fears that the European users might be faced with similar measures at the EU level and calls on the users to react now. Continue reading